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Abstract--Evaluating the phonic conductivity of glasses is difficult because of the combined mode of heat 
transfer. Ia this work, a model is developed for the flash experiment, and numerical results are reported. 
Simulations in the non-gray case have shown that heat transfer in the sample is completely free from any 
radiative contribution for conditions of small optical thicknesses and reflecting walls. Thus diffusivity 
identified from the rear-face thermogram is a quantity of phonic origin. Experimental values for phonic 
conductivity are presented. The results for float glass are in agreement with literature data. For silica, a 
new result has been obtained : the temperature dependence of the phonic conductivity is found to be similar 
to that of its specific heat, confirming microscopic models of thermal conductivity in disordered systems. 

1. INTRODUCTION 

In the conception of a metrological process for 
the thermal characterization of semi-transparent 
materials (STMs), the combined conductive-radiative 
heat transfer problem must be considered. This prob- 
lem can be treated accurately with an energy model if 
four intrinsic properties can be pre-defined: (1) the 
true phonic diffusivity (conductivity); (2) the true 
specific heat capacity; (3) the spectral absorption 
coefficient; (4) tlae index of refraction components. 
Among these parameters, the phonic diffusivity is far 
from the simple~,t to measure and the lack of data 
on this parameter can explain the efforts made by 
researchers in this field during the past two decades. 

The needs for a precise knowledge of this quantity 
are numerous in engineering sciences. For example, 
predicting thermal behavior during glass making or 
forming processes, estimating the insulation proper- 
ties at high temperatures, controlling industrial pro- 
cesses that involv,~ fused quartz (production of optical 
fibers or in the semiconductor industry). Such pro- 
gress can also lead to a better understanding of the 
phonon-phonon interaction in disordered systems 
through comparison of reliable data for the phonic 
conductivity of various glasses at high temperatures 
with the predictions of microscopic approaches. 

In the case of the flash method, the transient 
coupled problem has to be solved. The non-steady 
case for an absorbing and emitting medium has been 
widely studied since 1970 [1-4] for various radiative 
boundary conditions. In 1975, Viskanta and Ander- 
son [5] reviewed the literature available on the subject. 
The reported studies dealt mainly with prescribed tem- 

perature conditions at the boundaries of the system. 
Saulnier [6] improved and developed a nodal analysis 
based on the zoning method of Hottel and Sarofim 
[7] : it allowed extensive numerical calculations of tem- 
perature fields in the transient state for a system 
irradiated by a heat pulse on one of its black frontiers. 
This led Tan and Lallemand [8] to extend the previous 
problem to all kinds of convective-radiative heat 
exchanges at the boundaries. Finally, Tan et al. [9] 
considered a radiative external pulse, or an irradiation 
step, to simulate what happens in the flash technique. 
They concluded that it was possible to use the response 
of an STM to identify thermal diffusivities by a flash 
technique but pointed out that a well-adapted model 
was necessary in order to precisely define which diffu- 
sivity is obtained, and under which conditions. This 
is the aim of the current work. 

The study described here consists in developing a 
theoretical model of a one-dimensional transient com- 
bined heat transfer for the different thermal responses 
associated with different experimental conditions. The 
model has been developed keeping in mind that the 
known parameters are the thickness of the sample, the 
type of glass, the radiative limits and the temperature 
level (300-800 K for our metrological set-up). The 
model is described in Section 2, and a fnite-difference 
scheme is used to solve the energy equation. Coupling 
with the radiative transfer equation (RTE) is achieved 
through a source term which depends on the diver- 
gence of the radiative flux. This latter is obtained in a 
semi-analytical manner from the solution of the RTE. 
The non-gray character of various glasses can then be 
taken into account by simply computing the radiative 
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NOMENCLATURE 

aph koh/(pCp) = phonic diffusivity [m 2 s-~] 
Bil, Biz Biot number at z* = 0, (hje/kph) and 

z* = 1, (h2e/kph) 
Cp 

e 
E, 

hl~ h2 

k 
k* 
L 
L*m 

L°(T) 
N B  
N M  
Nm 
n 

P 
q¢ 
q~ 
q~* 

Q 

specific heat [J kg -1 K 1] 
thickness of the slab [m] 
exponential integral function of order 
i 
fraction of total blackbody intensity in 
0-2 T region 
heat transfer coefficient at z* = 0 and 

z* = 1 respectively [W m -2 K -1] 
thermal conductivity [W m-  J K -  1] 
kapp/kph , dimensionless conductivity 
intensity, radiant energy 
7tLm/(4nZ cr T4), dimensionless 
intensity 

blackbody intensity at temperature T 
total number of spectral bands 
total number of volumes 
kph~m/(4nZmaT~), gray Planck number 
refractive index 
non-linear diffusion coefficient 
conductive heat flux [Wm -z] 
radiative heat flux [W m 2] 
qrJ(4n2aT4),  dimensionless radiative 
flux 
heat pulse surface density [J m -2] 

S 
t 

t* 

T 
To 
Z 

source term function 
physical time [s] 
apht/e 2, dimensionless time 
temperature [K] 
reference temperature [K] 
space variable [m]. 

Greek symbols 

gl, g2 
O* 

2 

P 
P~, P2 
¢7 

"/70m 

total emissivity of surfaces 1 and 2 
T * -  T* = (T--  TO)/(Q/pCpe), 
dimensionless temperature 
wavelength [m] 
directional cosine between z and L 
density [kg m 3] 
total reflectivity of surfaces 1 and 2 

Stefan-Boltzmann constant 
~m e = gray optical thickness 
absorption coefficient [m-i]. 

Superscripts 
* refers to dimensionless quantities. 

Subscripts 
2 refers to a spectral dependence 
m refers to a spectral band 
ph phonic quantity 
r radiative quantity. 

heat flux on rectangular spectral bands. In Section 3, 
we present experimental thermograms that point out 
interesting features of the physics governing the tran- 
sient heat transfer. The conditions for the existence of 
a heat transfer equivalent to the purely conductive 
case are discussed. Then, the influence of the thickness 
of the slab on the identified diffusivity is studied for a 
given glass. It can be shown that conditions exist for 
which the estimated parameter is independent of the 
thickness (a very sensitive parameter for radiative 
transfer). This shows that the flash method can lead 
to direct measurement of the phonic diffusivity of 
semi-transparent materials. It is shown in Section 3 
that the spectral dependence of the absorption 
coefficient of the glass does not modify the conclusions 
found in the gray case as long as the experimental 
conditions ensure that bulk effects of the radiative 
heat transfer are non-existent. 

According to the criteria defined in Section 3, exper- 
imental results on phonic conductivity are presented 
in Section 4. Compared to similar results available in 
the literature, they show that the flash technique 
applied to STM seems to be accurate. The temperature 
dependence of the phonic conductivity of float glasses 
and amorphous SiO2 is found to be in relative agree- 
ment with both experimental results obtained by a 
method in the steady-state regime [10] and theoretical 

results found using microscopic approaches based on 
the physics of disordered systems. 

2. THE PHYSICAL MODEL AND THE 
NUMERICAL RESOLUTION 

2.1. Physical model 
A plane-parallel semi-transparent slab of an emit- 

ting-absorbing medium is considered. At time to = 0, 
the slab is subjected to a heat pulse on the entire front 
face. The governing equations of this coupled transfer 
can be written in one dimension if we assume an 
azimuthally symmetric radiation. The faces of a 
frosted glass sample are either coated with a gold 
substrate (low emissivity), or sprayed with a black 
paint with high gray emissivity, so that the radiative 
boundary conditions considered are opaque, diffusely 
emitting or diffusely reflecting walls. Polished gold- 
coated surfaces have been considered because decreas- 
ing the roughness of the surface leads to a reflectivity 
increase as long as the roughness stays small compared 
with the wavelength of the incident radiation even at 
temperatures close to 800 K. Furthermore use of gold 
ensures an emissivity that remains independent of 
both wavelength and temperature. It has been shown 
experimentally that the diffusivity values obtained for 
temperatures above 650 K are slightly smaller than 
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those obtained ila the case of frosted surfaces, thus 
showing that the radiative flux leaving the surfaces 
has been reduced at the very least. Heat transfer in 
the sample is only due to bulk effects. The case of 
specular reflecting boundaries has not been treated yet 
but would not modify the results in this special case 
of parallel walls with a lateral surface also being gold 
coated. 

The transient behaviour of temperature within a 
homogeneous, isotropic slab can be found by solving 
the energy equation : 

~T(z, t) ~q~ Oq~ 
P~P ~ - Oz Oz 0 < z < e  t > 0  (1) 

where q~ stand~ for the purely conductive flux 
-kph(O T(z, t)/3z) and qr for the radiative flux which is 
responsible for the temperature coupling. The thermal 
boundary conditions are of the third kind. We intro- 
duce a global heat exchange coefficient h to describe 
the convective-radiative heat losses. 

The radiative transfer equation at point M(z) is : 

# OLd(M) 
Z;. itz + L;.(M) = n~L;(T). (2) 

Solving this equation with the prescribed boundary 
conditions allows us to derive the expression of qr(M) 
by calculating the analytical expression of: 

qr(Z)=f fq~ ,~(z )d2=fo(2X~L](z , l~ )#d l~  

-2~ L;(z,~).d. d~= 2 q~m(Z). (3) 
m = l  

The subscript m stands for a spectral band 
A2 = [21, 22]. q~m is the radiative flux that corresponds 
to the wavelengtlh band from 21 to 22. 

Classical dimensionless parameters have been used 
for the thermal problem. Those linked to the radiative 
formulation are written for each spectral band m. 
The physical parameters n and Z are mean values 
calculated on each band, either arithmetically (na, ~a), 
or, for the absorption coefficient, by using the Rosse- 
land mean absorption coefficient ZR and the Planck 
mean absorption coefficient ZP, defined as follows : 

f 1 dL2(T)d2 fa z~L)~(T)d2 
1 ~. Z~ d T  

L°(T) d2 
- - d T  az 0 

ZP appears as a mean value, weighted by the local bulk 
emission of the blackbody, and ZR as a mean value 
weighted by the local blackbody emission gradient. 
The derivation of these coefficients and their con- 
ditions of application can be found in [11]. 

Thus the mean or equivalent optical thickness 
ZOrn = Xm- e that e, nters in the calculations is defined by 

a spectral band model that uses either Xa, ZP or ZR. 
In this representation, the opacity coefficient Zm is a 
constant, independent of the physical conditions at 
point M. The same applies to the Planck number 
expressed by" 

k p h Z m  
Nm 

4n2m~r Tg " 

The dimensionless gray radiative flux and intensity 
are written, respectively : 

qrm 7zLm 
q~*- and L * - - -  

2 4 2 4 "  4nmtrT0 4nmtr To 

Lm is simply defined as 

f ~2 L~(z) d2. 
i 

It is not a mean intensity, but rather a 'group'  intensity 
as interpreted by Patch [12]. The integrated intensity 
L is obtained by integrating Lm over each spectral 
band. This method has already been used by Grant  
[13] for rationalizing the choice of group constants in 
non-gray calculations using a variational principle. 

In dimensionless form, the energy and radiative flux 
equations, (1) and (3), become respectively : 

oo* k*(O*)~z , + S(O*) 
~ - Yz* 

O < z * = z / e <  1 t * > 0  (4) 

where 

s(o*) = - ~ m  q,*(z*) 

qr*m(Z* ) = 2L* + (0)E3 (Z0mZ*) 

-- 2L*-  (1)E3 (tOm (1 -- Z*)) 

%m F +YLJo ~ -  + 1) 4 

× F hr(=,, ) ,t2T(~,*)E2(ZOm(Z*--Z'*)) dz'* 

- f '  {O*(z'*) 
4 

x F;.~r(,,.)_~2r(z,.)Ez(zom(Z'*--z*)) dz'*]. (5) 

The radiative boundary conditions give the expression 
of L *+ (0) and L * -  (1) reported in the Appendix. The 
term F~,r(z,*) ~2r(z'*) appearing in the integral of 
relation (5) stands for the fractional blackbody emis- 
sive power in the wavelength-temperature band 
[21T,22T]. It is calculated using the polynomial 
approximations of Foqr given by Wiebelt [14]. The 
exponential integrals are calculated with recurrence 
relationships from the polynomial and rational 
approximations of Et(x). The integral is evaluated 
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numerically using the method ot" Gaussian quad- 
ratures. 

The thermal boundary conditions in z * =  0 and 
z* = 1 are" 

* * ~0" NB .comT ~, * 0 
k ( 0 ) ~ z . = B i , ' O * + y ,  N --qrm( ) 

00" N8 Z T *  
e(o*) = - i2. o* + E ,  (1). 

2.2. Numerical treatment 
The mathematical problem consists of solving a 

non-linear parabolic equation with a source term 
(equation (4)) rewritten for simplicity in the following 
way : 

0 T(z, t) 

0 < z < e  t > 0 .  (6) 

Because of the strong non-linearity of this problem, 
especially for short times, a fully implicit scheme can- 
not be used because of the divergence of the cal- 
culations at the beginning of the simulation. Thus, a 
Crank-Nicolson-type method, reported in [15] and 
known to be more accurate, was used for the calcu- 
lations. The Crank-Nicolson method consists of 
evaluating the coefficients at point (t ,n+~) J and aver- 
aging the values of T at times n and n + 1 in the evalu- 
ation of T and its derivatives. In order to avoid evalu- 
ating T, ."+ ~/2, p and s are expanded in a Taylor series 

I TT+lJ2)  This led to the about the point (i ,n+~, . 
following discretized energy equation : 

TT+"m-T'i ' -DAt ~[~+1,2 + - 2 + r 7  

-'2(sT+'/2*+"-' +s7 +''2"n) (7) 

with 

--At,  denoting the time step and Az, the grid 
spacing, 

__T~,+ J,m, the temperature variable approximated 
at the point (i, n + 1) for the mth iteration, 

- -D+,  the forward difference operator (D+f) i  = 
~+, -f,/Az, 

- - D ,  the backward difference operator (D_f) i  = 
f , - f ~  , IAz, 

n+ /2 ] n+ 1/2 n+ I/2 
--Pi+l/2 = ~ ( P i + I  +Pi ), 

__sT+ ~/2.,+,.m ~ = s(i, n + 1/2, T7 + ~.m--,), the source 
term evaluated at the point (i, n +  1/2) with the values 
of T evaluated at time n + 1 at the previous iteration 
m - 1 .  

This method is consistent, and accurate to second 
order in time and space. Douglas [16] has proved that 
the solution of equation (7) converges in the 12-norm 
to the solution of equation (4). The only restriction 

is that At/Az remains constant which increases the 
required computation time, as smaller time steps are 
needed at short times. 

Equation (7) leads to a set of linear equations. The 
problem is solved iteratively with a convenient pro- 
cedure proposed by Patankar [17]. 

There are three other specific characteristics of the 
model. 

- -The temporal boundary condition is expressed 
by converting the heat pulse into a temperature jump 
for the first half-elementary volume of the medium. 
Thus 0"(0, 0) = T* - T* = 2NM,  with N M  being the 
number of elementary volumes. When the steady-state 
is obtained, all the volumes have a temperature level 
equal to one, assuming no heat losses with the 
surroundings. 

- -The divergence of the radiative flux at a node 
is approximated by the rate of variation of the flux 
between the two boundaries of each volume. 

The emission terms of equation (5), which 
depend on temperature to the fourth power, are linear- 
ized according to the procedure proposed by Shen et 
al. [18]. For this, we use the values of temperature at 
the previous iteration m -  1 : 

( T " + l , m +  1) 4 = Tn+l,m(T ,,+l,m 13 

+4T,+ 1,,-12+6T0+1.,,-1 +4) + 1. 

The algorithm has been tested by comparing results 
yielded by calculations carried out with a source term 
which is linear in temperature, with the corresponding 
analytical solution. The precision of the radiative flux 
calculations were tested and it has been verified that 
the flux values stayed equal to zero to eight decimal 
places for a constant temperature field. Thus the cal- 
culation of the divergence of the flux is unnecessary 
for values less than 10 -7 . 

3. EXPERIMENTAL THERMOGRAMS AND 
SIMULATED RESULTS 

In this section, we present results obtained both 
experimentally and numerically. Experimental 
thermograms point out the influence of the radiative 
boundary limits (black or reflecting) and of the optical 
thickness of the sample. A great number of simu- 
lations have been carried out in the gray case to test 
the influence of the significant parameters. A large 
variety of thermograms have been obtained, and the 
explanation of how their shape is affected by one or 
another parameter is discussed in [19]. From these 
thermograms, an apparent diffusivity has been identi- 
fied. In what follows, the evolution of the difference 
between the apparent diffusivity and the phonic diffu- 
sivity as a function of the thickness of the sample will 
be discussed (for a given temperature and a given gray 
absorption coefficient), and the conditions that ensure 
an experimental measurement of the true phonic con- 
ductivity are deduced. 

Finally, it is shown that, under operating conditions 
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Fig. 1. Experimental rear-face thermograms--influence of the radiative limits. 
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Fig. 2. Experimental rear-face thermograms for a sample of strong optical thickness. 

that eliminate the radiative contribution to heat trans- 
fer, the non-gray character of  the glass does not modify 
our conclusions. This is illustrated by comparing 
numerical results obtained with a gray absorption 
coefficient, with those obtained for a five-band spec- 
tral model. 

3.1, 
Thermograms obtained by an experimental set-up 

described in [20], are shown in Figs. 1 and 2 and 
illustrate the difficulty of  identifying a diffusivity by 
such a method. Curve 1 of  Fig. 1 shows that, for a 
clear glass with black walls, the thermal response 
differs largely fi'om the case of  an opaque material. 

An initial peak appears at very short times. It is caused 
by a direct exchange between the two black boun- 
daries through a medium of  small radiative resistance. 
The rear face behaves as if it were the perturbed 
surface. The temperature decreases, passes through a 
minimum and increases under the progressive influ- 
ence of  a heat flux connected to the coupled mech- 
anism of  both conductive and radiative transfer. Such 
thermograms have been reproduced by numerical 
simulations. With the exception of  the proposal of  
Tan Heping [21], which came from a numerical study 
reported in [9], no method is available to find the 
thermal diffusivity in the case of  black radiative limits. 
If  the sample's faces have been previously coated with 
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a film of evaporated gold (reflecting walls), we obtain 
a 'classical' thermogram (curve 2). The temperature of 
the rear face increases continuously from time to = 0 
(time of the heat pulse) to a maximum, and is a func- 
tion of the input energy and the heat losses. The ther- 
mal response is similar to that of an opaque material, 
and it is therefore possible to use a high-performance 
identification process, such as the one based on the 
partial time moments [22], to identify a diffusivity. 
The problem is still to determine whether or not the 
identified parameter is an apparent one (including the 
radiative transport phenomenon), or representative of 
the true phonic conduction. To illustrate why it is 
important to know exactly what is measured in the 
case of a coupled transfer, we present thermograms 
(Fig. 2) obtained for a float glass of high Fe203 content 
(the colouring agent) and of large thickness (strong 
optical thickness). The influence of the radiative limits 
can no longer be distinguished, even at high tempera- 
ture. One could thus imagine that there are no radi- 
ative effects, and that the diffusivity identified in this 
experiment from the two thermograms is then the 
correct value of the phonic diffusivity. This is, 
however, not true in precisely this case since the mea- 
sured parameter still contains a non-negligible con- 
tribution of radiative origin. 

3.2. Influence of  the thickness on the identified diffus- 
ivity (gray media) 

The influence of the sample thickness of different 
glasses (different gray absorption coefficient), was also 
examined. Simulations were carried out for high tem- 
peratures in order to amplify radiative effects. The 
two conditions of perfectly reflecting and perfectly 
black walls are considered. As the heat exchange 
coefficients have been set equal to zero, a diffusivity is 
identified by use of an appropriate partial time from 
the numerically obtained thermograms. Figure 3 pre- 
sents the evolution of the apparent conductivity as a 
function of the slab thickness. 

Because of the use of dimensionless variables, the 
identified parameter represents the value of a con- 
ductivity (diffusivity) which is equal to l in the purely 
conductive case and greater than 1 when radiative 
effects contribute to an enhanced heat transfer. Our 
results (points of curves 6 and 7) are compared with 
models of radiative conductivity based on two different 
approaches : 

- - the  Poltz/Jugel model developed for conductivity 
measurements in liquids [23] and assuming strong 
optical thicknesses (curves 1,3), 

- - the  conductivity derived by assuming radiative 
equilibrium in the medium (curves 2,4). 

Figures 3 and 4 show the effect of the thickness on the 
efficiency of the heat transfer for two values of the 
Planck number, N = 2 and N = 0.125, respectively. 
Curves (1,2,3) are obtained with the two models 
quoted above. They are limited by values of conduc- 
tivity, which are independent of the thickness and are 

given for the upper limit by the Rosseland con- 
ductivity (curve 5), and for the lower limit by the 
phonic conductivity or the conductivity obtained in 
the case of radiative equilibrium and perfectly reflect- 
ing walls (curve 4). 

The main conclusion drawn from the analysis of 
these curves is that the flash method leads to the direct 
measurement of the phonic diffusivity. However, this 
measurement is direct only if the thickness of the 
sample and the boundary conditions are chosen in an 
appropriate manner. It is noticeable that reflecting 
walls delay the effect of the thickness on the measured 
conductivity. This measurement can also be per- 
formed by correcting the value of the parameter with 
the Poltz/Jugel model of radiative conductivity, as 
this latter seems to correctly describe the rate of heat 
transfer in the transient regime. 

Figure 4 shows, for example, that if one wishes 
to identify the phonic diffusivity of a glass whose 
equivalent absorption coefficient is of the order of 15 
m-~, the thickness of the sample must be less than 
10 mm. Generally speaking, the following criterion 
should be satisfied : for a STM sample having reflect- 
ing surfaces and an equivalent optical thickness (see 
Section 3.3) less than or equal to 0.1, the flash method 
will lead to the direct measurement of its phonic diffu- 
sivity. In other words, it is possible to define operating 
conditions for which the flash experiment creates a 
type of heat transfer that is free from a radiative con- 
tribution. 

It is also possible, when the optical thickness of the 
sample is strong enough (t0 > 10) so that radiative 
effects are maximum, to obtain the value of phonic 
origin by retrieving a conductivity calculated by the 
simple model of Rosseland. 

The last comment concerns the magnitude of the 
variation of the difference between the phonic and 
apparent conductivities. The more efficient the radi- 
ative transfer is (low values of N), the more important 
this difference will be. This can be seen in Fig. 4, where 
the gray-tinted rectangle represents the frame of Fig. 
3. If the material is transparent, it will be easier to 
respect the criterion regarding the sample's thickness. 
But the slightest departure over this limit rapidly leads 
to a large error if measurement of this parameter is 
taken as a phonic conductivity measurement. 

It is not necessary to discuss the effect of the tem- 
perature as it is evident that lowering the temperature 
of the experiment reduces the radiative effects caused 
by emission of the medium. 

3.3. The non-gray medium 
The previous result, confirmed by experimental 

measurements of the phonic diffusivity of glasses and 
presented in Section 4, supposes that we can affect an 
equivalent absorption coefficient to a glass over the 
whole thermal spectra. From a physical point of view, 
it is to-be expected that in conditions that eliminate 
the radiative contribution to heat transfer (no bulk 



Transient coupled conduction in glass 3407 

"o 

o" 

1,5 

1,25 

1 t O  m 

'I;o-O,i 

0-4 

Zo-10 

I;o-1 

I 

S" 
A , "  

,,.*.'. q 

d:~A AA**~ ÷÷D÷÷÷ ÷÷ 

O ~ * e f  . . . . .  
, , , , , i  3 , , 

10 

A A . ' ÷ ÷  

[ ]  A A , ÷ 

A • ÷ 

AA A . "  ÷ ÷  

~ . . ' O +  

Y 

. . . .  

10 

4 

-1 10 

Thickness (m) 

(1) black walls (Poltz/Jugel [23]) 
(2) black walls (Radiative Equilibrium) 
(3) reflecting walls (Poltz/Jugel [23]) 
(4) reflecting walls (Radiative Equilibrium) 
(5) Rosseland 

Present  w o r k :  

[] (6) black walls 
• (7) reflecting walls 

Fig. 3. Influence of the thickness on the apparent diffusivity (To = 800 K, ~ = 250 m ', N = 2). 

effects in the sample), the non-gray character of a 
glass does not play any role. This section is devoted 
to the verification of this point in order to consider 
possible explanations for the errors resulting from the 
hypothesis of a gray medium. The spectral dependence 
of the refractive index is not considered here. The 
mean gray absorption coefficients of Planck and 
Rosseland, and the mean band coefficients are cal- 
culated from the absorption spectra of various float 
glasses measured by Banner [24] at St-Gobain Rech- 
erche Company, using the definition of ~a, ~P, ~R. 

Figure 5 gives the absorption spectra at 773 K of 
the clearest of these float glasses (0.09% Fe:O3) and 
the multi-band models that will be used in the simu- 
lations. Table 1 shows an example of the numerical 
values of the mean band coefficients. The gray-equi- 
valent coefficients calculated by ZR and 2p are also 
shown. We have considered a sample thickness of 
2 mm. Both black and reflecting walls have been 
studied. In the case of reflecting walls (Fig. 6), the 
non-gray model lead to thermograms that do not 

differ from those obtained with the mean gray 
coefficients. The use of one or the other coefficient for 
the band model has no appreciable influence on the 
solution. By analysing the partial times t*/z in each 
case (Table 2) and comparing the values to 0.139, the 
value of the purely conductive case, it can be seen that 
the errors of radiative origin do not exceed 3 %. Table 
3 shows that the relative discrepancies between the 
gray medium and the band-gray medium are moderate 
and less than 1% when the spectra is represented by 
the Rosseland equivalent coefficient. It can also be 
seen that the use of ZR better fits the multi-band 
description defined using the Rosseland mean 
coefficient (0.75%), than is the case using coefficients 
defined by the Planck mean (1.16%). It is therefore 
recommended that an equivalent gray coefficient be 
calculated using ZR in order to determine the 
maximum thickness that can be considered in order 
to ensure direct measurement of the phonic diffusivity. 
For example, when )OR = 141.5 m - '  for the clearest 
glass, and for a thickness of 2 mm, an optical thickness 
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of  0.28 is obtained. Looking back at Figs. 3 and 4 
shows that this is a moderate  case, and that the true 
conductivity will undottbtly be measured. Here, the 
error due to radiation is so small that it cannot be 
differentiated from the experimental error. 

In the case of  black walls, the non-gray character 

of  the glass modifies the pulse thermal response at 
short times. The use of  one or  another mean coefficient 
in the band model is important• This can be seen in 
Fig. 7, especially for small times. The curves labelled 
(3) represent the non-gray case with the band values 
of  the absorption coefficient calculated using the 
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Table 1. Band model of the absorption coefficient of a clear 
float glass at 773 K 

)~R (cm -l) ZP (c m-l)  X. (cm -I) 
2k - 2k+ ~ Rosseland Planck arithmetic 

0,8 -- 1.56 43.52 0.00078 0.391 
1.56-- 2.72 1.66 0.0267 0.301 
2.72--4.18 14.12 1.247 5.087 
4.18--5.05 99.33 2,816 20.72 
5.05--54.94 414.42 1434.37 2665.8 

Gray 1.415 1438.4 1438.46 

Table 3. Relative errors in (%) between the 
diffusivities obtained in the gray case and the 

non-gray case (reflecting walls) 

Gray 
Non-gray 

band coefficients ZR )~P 

XR 0.75 1.98 
Za 0.5 --1.7 
XP --0.07 1.16 

Table 2. Relative errors between the diffusivities 
obtained by simulation in the gray and non-gray case 

and the phonic diffusivity (reflecting walls) 

Simulation cases Time t * , 2  Error (%) 

5 bands XP 0.136 05 2.12 
5 bands X. 0.1353 2.66 
5 bands )~R 0.134 92 2.93 
Gray XR 0.135 95 2.19 
Gray XP 0.137 65 0.97 
Phonic conductivity 0.139 0 

Rosseland,  Planck or ar i thmet ic  mean.  Wi th  ~,, the 
thermal  response is halfway between the faster, 
obta ined  with ZP (dot ted line), and  the slower one, 
obta ined  with ga. The curves ob ta ined  using either ZP 
or ZR as gray equivalent  coefficient for the whole spec- 
t ra  can differ significantly. The use of  ZP in a multi-  
band  model  or  7R in the gray equivalent  model  agrees 
well with  experimental  results. This has been con-  
firmed by s imulat ions of  10 spectral  bands  (on the 
other  hand,  the change from a 5-band model  to a 10- 

band  model  does no t  change the thermal  response 
obta ined  with reflecting walls). 

This  example shows tha t  the absorp t ion  spectra 
must  be precisely known  for the identif ication f rom a 
global measurement  of  a parameter  of  purely phonic  
origin. This is precisely the p rob lem tha t  limits the use 
of  the hot-wire technique for such a measurement .  

4. EXPERIMENTAL RESULTS FOR PHONIC 
CONDUCTIVITY 

We present  results of  phonic  conduct ivi ty  for a silica 
glass since this med ium is a reference. Our  exper- 
imental  study on  float glasses of  various Fe203 conten t  
can be found in [25]. Figure 8 presents only one result 
obta ined  on  the clearest float glass (0.09% Fe203) 
and  the mos t  reliable data  found on  the same glass 
(0.042% Fe203). The discrepancies between the con- 
ductivity values at  a given tempera ture  may be due to 
the characterist ics of  each exper imental  set-up. But  
the agreement  is good (2.5 % of  difference between the 
slope values) in terms of  the tempera ture  dependence 
of  kph. 
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Fig. 6. Experimental rear-face thermograms in the gray and non-gray case for a clear glass having reflecting 
boundaries. 
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The gray mean absorption coefficient ZR can be 
calculated from the absorption spectra of silica. A 
sample of 2 mm thickness has been tested in order to 
satisfy the criterion of optical thickness inferior to 0.1. 
The sample was coated with gold in order to obtain 
reflecting walls. Simulations have shown that a total 
reflectivity of 90-100% does not  significantly affect 
the value of the identified parameter. The cor- 
responding values of thermal conductivity were 
derived from the thermal diffusivity measurements, 
using Richet's results for Cp(T) [26] : 

Cp(T) = 0.917+0.3 x 10 3 T - - 2 5 1 4 0 / T 2  ( j g - I K - l ) .  

The density p is equal to 2.2 kg m - 3  (the variation 
between 300 and 800 K is less than 0.1%). 

Figure 9 presents the evolution of the phonic con- 
ductivity of SiO2 vs temperature. The dashed curve 
fits the data according to the following relation : 

k p h l ( r )  = 1.18+3.14x 10-3T 

-- 17966/T 2 ( W m - l K - ] ) .  

This result confirms that, as predicted by microscopic 
approaches in solid-state physics, the temperature 
dependance of kph is similar to that of  the specific heat. 

Other published experimental results on SiO2 report 
a linear dependence of kph on temperature. This may 
prove that in those experiments a radiative con- 
tr ibution to kph exists (either due to the experimental 
set-up or to the model used in the identification pro- 
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cess), which is greater than the uncertainty on the 
measurement. The concavity of  the curve shows that 
even at high temperatures, kph tends not  to increase 
but rather to remain at a relatively stable value until 
the glass transition point. 

Despite this, a linear regression applied to our 
experimental results (solid line of  Fig. 9) gives : 

koh 2 = 1 .075+7.05x 1 0 - 4 T ( W m  -I  K J) 

Compared  with the results of  Kunc [27], the slope 
coefficient is in good agreement (12% lower) for silica 
glass and on the same order as the one found for float 
glasses (70% SiO2) [25]. 

5. CONCLUSION 

In order to show that the flash method applied to 
STMs can lead to the measurement of  the true thermal 
diffusivity, a theoretical model  of  the 1D transient 
coupled heat transfer has been developed, and the 
numerical treatment of  the problem solution has been 
detailed. Due to extremely high computat ion times, 
the use of  the model  in an identification process has 
not  been considered, but simulations have shown that, 
for conditions of  small equivalent optical thickness 
and in the case of  reflecting walls, the flash method 
provides a direct measurement of  the phonic diffu- 
sivity of  glasses in the same way as it does for opaque 
materials. In Section 3, it was shown that the spectral 
dependence of  the absorption coefficient can be taken 
into account only through the knowledge of  the 
Rosseland mean coefficient. 

Finally, experimental results for the thermal con- 
ductivity of  SIC,2 are presented. A new expression for 
the phonic conductivity was derived. It was used to 
confirm that the. flash technique is well-adapted to the 
characterization of  STMs, since operating conditions 
can be found in order to avoid any radiative con- 
tribution to heat  transfer. Furthermore,  our results 
confirm microscopic theoretical models of  the con- 
ductivity of  disordered systems. 
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APPENDIX 

aim + bLma2m 
Lm* + (0) 

1 -b~mb~m 

L * -  (1) = a2m +b2malm 
1 -blmb2m 

Elm (0.0) )4 

2 [" "c°m I'O*(z'*) q- Plm J0 ~ ~ -  q- l) 4F2'T(z'*, ~2T(z'*'E2 ('C0mZ'*) dz'*) 

~2m (0a) )4 
a*m = 4 \ T *  +1 F~,'r~o ~r~t~ 

I TOm (0*(Z'*) + I)4F;.,T~z,.) ,L,T( ,.)E2(,Com(1--2'*)) dz'* +2.~m I0 q- t,-VU0* 
b*n = 2pimE3(zom) for i = 1,2. 


